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Time dependence of phase variables in a steady shear flow algorithm
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We study the periodic time dependence of shear stress that occurs in a low- and a high-density fluid in a
molecular dynamics algorithm for simulation of constant shear flow. We present a generalization of the linear
response theory for a case when the equilibrium relaxation function and the equilibrium shear stress depend on
strain. The predictions of this generalization reveal that the time dependence at low densities is a completely
nonlinear effect. At high densities the amplitude of equilibrium oscillations of shear stress with strain is
modified by strain-dependent viscosity, causing a decrease in amplitude proportional to shear rate in the linear
response regime.
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I. INTRODUCTION cient[7]. Here we show that this is another source of time

In a previous papefl], we pointed out a curious effect dependence of phase _variables ilj thg Sllod descriptiqn of
present in small systems undergoing thermostatted shegpear flow at.hlgh density, but that in this case the amplitude
flow described by the “Sllod”equations of motiofi2] with ~ decreases with shear rate. , .
constant shear rate, where the phase variables such as sheafn this work we investigate the time periodicity of shear
stress, hydrostatic pressure, and internal energy were fourti€SS under shegassuming that the time dependence of the
to be periodic in time, with a period equal to the inverseOther phase variables is of the same ofigmthe two limit-
shear rate. ing cases of low and high density from the point of view of

This time periodicity was investigated for a low-density the linear response theory. Wg show that the tim.e pgriodicity
two-dimensional Weeks-Chandler-AndersefWCA) [3] (_)f shear stress can be described by a generallzatlon of the
fluid. We found that the amplitude of oscillations increased!in€ar response theory that assumes strain dependence of
with the increase in shear rate, and disappeared quite rapidBPth the equilibrium ensemble averages and the shear stress
with the increase in the number of particles in the system, sé¢l@xation functions. The application of this theory to sys-
that for the investigated number densijy=0.396 85 it be- tems at low and high denS|_ty shows that the pe.I’IOdIC time
came virtually indistinguishable from the noise foE8. We ~ dependence is caused by different mechanisms in these two

showed that these oscillations can be reproduced using @S€s- While the periodic behavior with the amplitude in-

time-dependent generalization of the transient time.creasing with shear rate at low densities is a completely non-

correlation function formalisni4], but we did not explore linear eﬁc_ect, the d_ecreasing amplitude a_t high densities can
the equilibrium linear response limit of this effect. We con- P& described by linear response formalism, at least at low
jectured that the density has to be high enough so that it ighear, provided that viscosity of the system has a weak strain

impossible for a particle to traverse a distahcequal to the ~dePendence.

side length of the periodic cell, in any direction without in-

teracting with other particles. The investigated density was Il. SIMULATION DETAILS
the limit density still satisfying this condition.

In a recent worlf5], we established that this time three- ) ) , |
dimensional, WCA fluid system at a high density would partlclt_es interacting thrcilzjgh the ghort-_range rgpulswe WCA
show finite unrelaxed shear stresses under strain, while réotential, ®;=4e[(a/ry)**~(a/ry)"]+& if theGdlstancerij
taining its liquid structure and diffusion, at much higher sys-Pétween the particles and j is less than 2% and zero
tem sizes(N=~256). This effect is caused by a finite-, otherwise, where is the depth of the Lennard-Jones poten-

temperature-, and density-dependent “shear stress correlatigl Well. and o is the particle exclusion diameter. The
length,” related to the anisotropy in the pair distribution -€hnard-Jones unifs] are used throughout the paper.
function induced by the strained periodic boundary condi- YV investigated the systems of varying size at two state
tions [6] (i.e., adjacent horizontal rows of periodic cells POINtS. The firstis at the temperature f 1.0 and the low-

shifted by the same amount with respect to each ptied density limit of p=0.176 78 that still satisfies the same con-
reflected in the angular dependence of the diffusion coeffidition as the formerly studied two-dimensional systgh
i.e., that it is impossible for a particle to traverse the periodic
cell in any direction without interacting with the other par-
ticle whenN=2. This is the limiting density at which the

*Present address: School of Chemistry, The University of Sydneyrange of the WCA potential does not exceed half the simu-
NSW 2006, Australia. Email address: janka@chem.usyd.edu.au lation box length foN=2

S0 named because of their close relationship to the Dolls tensor The second state point is at the high dengityl.0 at the
algorithm. temperature oT=1.2 where the system still stays in the fluid

We have studied a three-dimensional fluid\bidentical
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state even for sufficiently small system sizes for which theviscosity when the equilibrium shear streBg, vanishes.
strained periodic boundary conditions can cause finite shedgquilibrium production runs were §@ime steps at low den-
stress[7]. The smallest system size at this state point wasity and 10 time steps at high density, and the time window
N=108; systems smaller than this would crystallize becauséor the integration of the shear stress autocorrelation function
of the influence of periodic boundary conditiof$s. (4) was five time unitdi.e., 5000 time steps

The systems were studied in equilibrium and under shear. In the nonequilibrium runs, the system was brought to the
In equilibrium, static strain was imposed in the periodic steady state after 100 periodsylThe steady-state averages
boundary condition§l,5,7] by shifting each horizontal layer were then collected over $@eriods in the low-density runs,
of periodic cells by the distanc® (0<<A <L, whereL isthe and in the high-density systems over 50 000 periodsNor
periodic box lengthin the x direction with respect to the =108 and for 5000 periods for the largest system size
layer just below it. The dimensionless strain thus introducedN=500.
ise=A/L.

Shear is simulated using the SlIp2] homogeneous con- IIl. LINEAR RESPONSE THEORY
stant shear rate algorithm in conjunction with the Lees- First, we briefly review the line of reasoning leading to
Edwards sliding periodic boundary conditiof40]. The finite shear stress proportional to strain rate in fluids under
Sllod equations of motion with shear applied in thelirec-  shear. If all fluid particles are instantaneously displaced at

tion are time t=0 in x direction by &, =e.r, (wheree, is the unit
P o/m+ _ vector in thex d|re_ct|_orb, so that _the total Q|men5|onless
i =Pi &yi» deformation or strain is equal g this creates instantaneous

, (D) shear stres®,,(0)=G..e proportional to strain in the fluid.

Pi = Fi— &vpyi — api, The constant of proportionalit@.. is the “infinite frequency

wherer; andp; are the atomic positions and momerfajs shear modulus.” In time, this shear stress decays to zero ac-
the total interaction force acting on the atoy is the con-  cording to some relaxation functidiz(t),
stant strain rateg, is the unit vector in the direction, andx Pyy(t) = Gefg(t). (5)

is the Gauss thermostat multiplier,
N \ The relaxation function is such thdig(0)=1, fg(t)—0 as
_ B 5 t— oo, and that the integrafly fr(t)dt exists and is finite.
a_gl Fi-pi YpX‘pY‘/gi Pi (2) When the system is sheared at a constant strain yate
=de/dt, new deformations are constantly imposed while
used to remove viscous heat and keep the kinetic temperahear stresses due to the previous deformations did not have
ture, T=(Epi2/m)/[kB(3N—4)] constant. The number of de- time to fully relax. Thus aftedt we have
grees of freedom I8 in the expression for temperature is _
reduced by 4 because of the conservation of total momentum Pyy(dt) = G..ydtig(dD).
and the constraint on kinetic energy. Shear rate varied fromfter 2dt the shear stress is
0.0 (equilibrium) to 1.0. Thermostat was used even in equi- _
librium (wheny=0) in order to ensure that the properties of Pyy(2d1) = G..ydtfR(2d) + G..ydtfr(dD),
the equilibrium and sheared systems were compared at thehere the first term on the right hand side is the shear stress
same state point. _ . _ due to the deformation imposedtatO, which has now been
The equations of motioril) were integrated using the relaxing for ait, and the second term is the shear stress im-
fifth order Gear predictor-corrector method with the timeposed at=dt, which has been relaxing fait. After ndt,
step of 0.001. In the equilibrium simulations, the system was ne1
first equilibrated for 1Btime steps at the desired static strain _ .
e in the periodic boundary conditions. After that, we col- Py(ndY ‘G”d% fr(n=Day, ®
lected the average values of the shear stress,

N
PxiPyi
Pyle)V={ = 24 3 Foryii ), 3 Pyy(t) = ,Jt G..fr(t - s)ds. (7)

i=1 ij>i

or with the substitutiort=ndt and s=idt,

0
and computed the strain-dependent “modified” viscofitly

using the Green-Kubo relations, The steady-state value &, under constant shear rajeis

then equal to the infinite-time limit of the Eq7), and is
v ([~ proportional to shear rate as long as the relaxation function
n* (S)Zk_'rf di[Pyy(e,0) = Pyyo(e) I[Pyy(e,t) = Pyole)]),  and shear modulus do not get modified due to structural
B0 changes under shear. The coefficient of proportionality
(4)

where V is the volume of the simulation celkg is the W:ny(oo)/VZJ
Boltzmann constant, ané,(e) is the ensemble average of 0

the equilibrium shear stress at the strainThe modified s the “linear response” viscosity of the system. In the Max-
viscosity 7* coincides with the conventional Green-Kubo well model of viscoelasticity, the relaxation function is as-

[

| G..fr(t)dt (8)
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sumed to have exponential forifiy(t) =exp(—t/ 7), whereris t

the “Maxwell relaxation time,” and viscosity is equal®.r. Pyy(e,t) = Pyyole) = Yf Frle,t-9)ds.
In practice, the relaxation is rarely exponential. Green-Kubo 0
theory gives the linear response viscosity in terms of correin the infinite-time limit the “steady state” shear stress at the

lations of the shear stress fluctuations in equilibrium, straine is
p=i | dPOP). (© Pyy(e,) = Proole) = ¥ f Fele.Ddt=y7% (e). (13
gl Jo 0

If the equilibrium shear stred3,,, vanishes for all values
of strain and viscosity is strain independent, then there is no
periodic dependence of shear stress in the linear response
(low strain rate¢ regime. Note that viscosity can be strain

Comparing Eqs(8) and(9), we can identify the infinite fre-
quency shear modulus as

Gw=i<P§y(0)>. (100  independent even if the relaxation functidfy depends
kT on strain, as long as its infinite time integral is strain
independent.
and the relaxation function as If Pyyo(e) has a nonvanishing amplitude, but the modified
viscosity 7* does not depend on strain, the periodic form
Fo(t) = (Pyy(0) Py (1)) (11) P,yo(e) under shear will be shifted by y5* without any
R (Piy(0)> ' deformation or phase lag, and the amplitudePgf(e,t) will

be strain independent.

If the modified viscosity depends on strain, the equilib-
rium periodic formP, () gets deformed under shear even in
the linear range of shear rates. However, the period-averaged

shear stresP,, stays proportional to strain rate in the range

Vv where the response is linear for all straifg,=y7* (* is
Frle,t) = k—.|.<[ny(8.0) — Pyyo(8) J[Pyy(&:t) = Pxyo(e)]). the period-averaged modified viscosity
B In the previous papefl], we have used the time-
(12 dependent generalization of the transient time-correlation
function formalism[4] to obtain the strain dependence of

FR(S,t) is continuous in botle andt, vanishes in the infinite shear stress in the two_partic|e System in the nonlinear
time limit and has a finite infinite time integral equal to the regime,

“modified viscosity” n* (¢) at the straine [Eq. (4)].
. V o]
In addition, we assume that the shear stress relaxes to a ny(%s) =y J dt<ny(8,0)EQny(7,e, g (14

In a more general case bo@, and the relaxation func-
tion fg depend on strain. We dendtg(e,t) =G, (e)fg(e,1),
where Fg(e,t) corresponds to the equilibrium correlation
function in the strained system,

strain-dependent equilibrium valig,(e). The equilibrium ksTJo
shear stress must be an odd periodic function of strain with ) ) o
the period equal to unity. where P, (e,0)gq is the instantaneous equilibrium value of
After instantaneous deformation from the initial strain ~ Shear stress at the strain connected to the value of shear
to go+Ae, shear stress relaxes according to stress at the same strain after tirndy a nonequilibrium
trajectory with strain ratey. Equation(13) represents the
Pyy(80 + Ag,t) = Pyo(eg + Ae) = AeFr(eg+ Ag,t). linear limit of Eq. (14) with the substitutionP,(e,0)gq

—[Pyy(£,0)~Pyy(e)leq- The reasoning behind Eq$12)

Let us assume that initially, al'=0, the boundary strainis 44 (13) provides the physical interpretation for E44) as
equal togq, and that the system is sheared at a constant rate

v. At the end of each time incremedt, the shear stress will Pu(7:8) = Pyole) = yn* (y,8),
relax to the value determined by the relaxation function at

Y . - . .
the instantaneous value of strain. All terms of shear stress Ovr\/heren 's the nonlinear modified viscosity,

the right-hand side relax towards the value Ry, corre- v [~
sponding to the instantaneous value of strain. n* (v,e)= T dt([Pyy(,0) = Pyyo(e) JeqPxy( 7,8, neQ) s
In analogy to Eq(6), aftern steps of duratiowlt of shear- 810
ing with the shear rate, shear stress is which depends both on strain and on strain rate.
Piyleo+ nydt,ndt = Pyy(zo +nydt) IV. LOW DENSITY RESULTS AND DISCUSSION
n-1
=y, dtFg(eg + Nydt, (n—i)dt), In a low-density system under shear, the amplitude of the
i=0 averaged shear stress oscillations as a function of instanta-

neous strain quickly decreases with system size. In Fig. 1 we
or in integral form obtained by substituticsFso+nydt, t  show the amplitude oP,, for increasing numbers of par-
=ndt, s=idt, ticles at the shear ratg=1.0 at two densitiesp=0.176 78
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) FIG. 3. Dependence of the shear stress averaged over a period
FIG. 1. Number dependence of the amplitude of shear stress -

oscillations at two low densitiep=0.18 is actuallyp=0.176 78 Efoolsfé”?gor; Pxy ?r? s:et?r dr";‘_te f(:rr] the two-particle bsystetr_n;att dt
for the shear rate=1.0. =0. . From the dotted line, the response can be estimated to

be linear for shear rates up %=0.4.
and p=0.15. Although the effect becomes reduced with the

decrease in density, it still exists for small system sizes even _ Vv

at densities lower than that where the particles cannot Frle.t) = kBT<ny(8’O)PXV(8’t)>' (15)
traverse the periodic cell without interacting, proving that the ) )
conjecture in Ref[1] was wrong. The cause of the strain dependence of the correlation func-

Since the time periodicity of the shear stress is the mostion Ed. (15) can be understood in the language of hard-
prominent forN=2, this is the system size we explore fur-

ther. The amplitude of the shear stress oscillations increases 03 B
with the increase in shear rate, as illustrated in Fig. 2. At the
same time, the absolute value of the shear stress increases. 025} ]

From Fig. 3 it can be estimated that the magnitude of shear
stress is proportional to shear réte., the response is linear
up to y=0.4, after which shear thinning takes place. In the
linear range of shear rates, Fig. 2 shows that the shear stress
oscillations cannot be discerned within the accuracy of the
signal.

The time correlation functions for this system, computed
at different equilibrium straing imposed by the periodic
boundary conditions, are shown in Figa# As can be seen

0.2

0.15

V(Pxy(0)Pxy(t))/ksT

in the graph, the equilibrium shear stress vanishes for all -0.05 . . L A
strains and the relaxation functiéi found from Eq.(12) is g 1 2 3 8 4 A
a continuous function of straia as well as of the time,
b.
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FIG. 2. Periodic form of shear stress under strain for increasing FIG. 4. Shear stress autocorrelation functié@sand their inte-
shear ratesy in a two-particle system at the densify=0.176 78  grals(b) in equilibrium two-particle system at different static strain
under shear. The period of oscillations isylih time units, or 1 in  e. While the correlation functions depend on strain, viscosity does
terms of the instantaneous straim yt. not.
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sphere systems. In the equilibrium two-body periodic sys- Ll - e L .

tems under different boundary-imposed strains, the collision b
frequency and the angular distributions of collisions remain “r

the same, but the collision sequences are different, since = WL === |+

when a particle leaves the minimum image box of the other §;, a0t el 1
particle after a collision, it re-enters it at a different position o e
for different values ofe. This affects the time-correlation S 2 L eman
functions, but not the infinite-frequency shear modulus, ) 10 % o . |
which is a time-independent ensemble average. Viscosity YW [—]/5 sagdsess s
does not depend on strain eitHétig. 4(b)]—as an infinite- A R
time integral, it is again a time-independent ensemble 10 ) ) ) )
average. 0 2 4, 8

The linear response theory presented in Sec. Il predicts
the change in amplitude proportional to shear rate, but only if FIG. 5. Shear stress time-correlation function for different
equilibrium viscosity depends on strain. Since this is not thestrainse in a system of 108 particles @t=1.2,p=1.0. The inset on
case, the time periodicity of shear stress is a purely nonlinedhe left-hand side shows an enlargement of the shear modulus, the
effect. right-hand-side inset shows an enlargement of the tail.

Under strong shear, the angular probability distribution of
collisions in a two-particle system becomes strain dependereriod equal to the inverse shear rate, and the amplitude
[11,12, which causes the oscillations of shear stress. If thequal to the maximum ensemble-averaged shear stress under
number of particles in the system increases, so does the nurdtrain in equilibrium. Open circles in Fig. 6 represent the
ber of possibilities of pair collisions, and the differences inN-dependent amplitude of shear stress oscillations under the
the collision sequences in equilibrium and the angular distrishear ratey=0.01; they coincidéwithin the error barswith
butions under shear disappear. If the density is lowered sthe maximum equilibrium shear stress in the strained bound-
that particles can move over the whole periodic cell lengtrary conditions.
without interacting, the “noise” caused by missed collisions In further studies we use the system sizeNs£108. In

decreases the difference in the collision sequences and angtig. 7 we comparéas full circles the average shear stress
lar distributions. under several strains in equilibrium aiithe dashed-dotted

line) the time-periodic form of the shear stress under shear

rate of 0.01 as a function of instantaneous strain. If we sub-
V. HIGH DENSITY RESULTS AND DISCUSSION tract the shear stress averaged over the period of oscillation
(which is equal to %, where »=6.35 as calculated from

size wasN=108. This system size is large enough that the?€r0 Strain equilibrium Green-Kubo integrairom the peri-

sequence of interactions does not influence the shear stre?gc form, the equilibrium shear stresses fall on the obtained

relaxation under strain. However, for sufficiently small sys- otted line. _ ) _
tem sizes(up to N~500 shear stress does not generally The magnitude of period-averaged shear stress increases

relax to zero, but to a strain-dependent finite value. Thé/"ith shgar rate, initially linearly for shear rates up to 03,
phase space distribution functions are strain dependent pafter .Wh'Ch the system starts to ;hear thiig. 8(a)].'The .
cause the configurations that can reconcile different distribu@MPlitude of shear stress oscillations decreases with the in-
tions of atoms on the opposite boundaries contain some shear

At the high density ofp=1.0 the smallest studied system

0.14 T

stress dependent on the imposed boundary stEdirAt the

same time, the boundary strain does not affect the particle 012 L .

mobility—diffusion coefficient is the same under all strains % g S y‘:gj81

within the simulation accuracy?], but becomes slightly an- € O1F ]

isotropic. The eventual dependence of the modified viscosity O] 0.08 ]

on strain could not be discerned within the simulation o f

accuracy. \g 006F h
The correlation functions foX=108 are presented in Fig. = $

5 for several values of strain. There are small differences in % 0.04 ]

the infinite frequency shear moduli that are not in the same = %

order as the unrelaxed stresses in the tails of correlation func- 0.02 2 ¢ @ ]

tions, but it is not clear if this is due to statistical errors. 0 e B

Viscosity calculated from the integral E@t) at zero strain is 100 200 3?\? 400 500

7=6.35.

The magnitude of maximum ensemble-averaged shear fiG. 6. Amplitude of the average shear stress as a function of
stress under strain decreases with system size, albeit in &}stem size in equilibrium under strained periodic boundary condi-
irregular, nonmonotonic waycrosses in Fig. 6 If the sys-  tions (y=0.0, crossesand under low shear ratey=0.01, open
tem is sheared very slowly, shear stress averaged at the samigles at T=1.2, p=1.0. The amplitudes are within each other’s
instantaneous strains oscillates periodically in time with theerror bars.
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FIG. 7. Full circles represent equilibrium shear stress as a func-

tion of strain for theN=108 system alT=1.2, p=1.0. The dashed-

FIG. 9. For shear rateg<0.1, the magnitude of shear stress

dotted line is the strain-dependent periodic form of shear stresgcreases proportionally to shear rate, but with different slopes re-
under shear ratey=0.01. When this periodic form is shifted by flecting strain-dependent viscosities.

Exy: vn, where »=6.35 is the equilibrium zero-strain viscosity, it
passes through the equilibrium shear stress values.

® Py
-y

0.22

0.21

0.2

0.19

0.18

(Pxy(€))max~Pxy(€))min

crease in shear rate up to=0.4. For higher shear rates it
starts to increase in an irregular, nonmonotonic way.

In Fig. 8b), the amplitude of shear stress oscillations de-
creases linearly fory<0.3, i.e., in the range where the
period-averaged shear stress is proportional to shear rate. A
linear change(whether increase or decreassf amplitude
under shear is predicted by the linear response theory in Sec.
Il if the modified viscosity is strain dependent. We plot
shear stress at four strains as a function of shear rate in this
range in Fig. 9. For low shear rates the dependence is clearly
linear with weakly strain-dependent slopes, showing that the
modified viscosity is indeed dependent on strain. This strain
dependence is responsible for the small decrease in ampli-
tude in this range of strain rates.

Note that a linear decrease in amplitude according to Eq.
(13) cannot go on indefinitely with increase in shear rate—
eventually, some peaks in the form in Fig. 7 will disappear
and then move to the other side of the period average. Until
all the peaks change sides, the amplitude will change irregu-
larly; afterwards it will increase linearly with the increase in
shear rate, just as can be seen in Fidp) 8or y=0.7. How-
ever, for such high shear rates the increase is not linear be-
cause of shear thinning.

VI. CONCLUSION

We have studied the periodic time dependence of shear
stress in the constant strain rate algorithm for computer
simulation of bulk shear flow in the low and high fluid den-
sity limits.

We showed that the generalization of the linear response
theory, where both the equilibrium shear stress relaxation
function and the equilibrium shear stress are strain depen-

FIG. 8. (a) Dependence of the shear stress averaged over a pélent, predicts that the periodic form of shear stress as a func-
riod of oscillationP,, on shear rate foN=108. The response can be 10N of strain for different shear rates will be equal to the

estimated to be linear for shear rates upyt0.3. (b) Amplitude of

periodic strain-dependent form of shear stress shifted by the

oscillations of shear stress decreases linearly with the increase Period-averaged viscosity multiplied by shear rate. The de-

shear rate in the linear response regitiud line). For higher shear

formation of the signal will be determined by the strain de-

rates it reaches a minimum and then increases nonmonotonicallpendence of equilibrium viscosity and proportional to strain
The dashed line is a guide for the eye.

rate.
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In the case of very low density, the shear stress relaxatiostrain for sufficiently small system®<500. The weak de-
function depends on strain only for extremely low particle pendence of viscosity on strain causes the linear decrease of
numbers(N~2), where it is a consequence of the strainamplitude in the linear regime to a minimum value. For
dependence of the sequence of collisions. Equilibrium sheaiigher shear rates there is a nonlinear increase in amplitude

stress vanishes and viscosity does not depend on strain. T@companied by shear thinning in the period-averaged shear
dependence of the probability distribution of collisions ongtress.

strain is a nonlinear effect, and generates the periodic time
dependence of shear stress only in the nonlinear regime, for

y>0.4. o . ACKNOWLEDGMENT
In contrast, when the density is high, both the equilibrium
shear stress and the modified viscogiBreen-Kubo viscos- The author wishes to thank the Australian Partnership for
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