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We study the periodic time dependence of shear stress that occurs in a low- and a high-density fluid in a
molecular dynamics algorithm for simulation of constant shear flow. We present a generalization of the linear
response theory for a case when the equilibrium relaxation function and the equilibrium shear stress depend on
strain. The predictions of this generalization reveal that the time dependence at low densities is a completely
nonlinear effect. At high densities the amplitude of equilibrium oscillations of shear stress with strain is
modified by strain-dependent viscosity, causing a decrease in amplitude proportional to shear rate in the linear
response regime.

DOI: 10.1103/PhysRevE.71.011202 PACS numberssd: 66.20.1d, 05.20.Jj

I. INTRODUCTION

In a previous paperf1g, we pointed out a curious effect
present in small systems undergoing thermostatted shear
flow described by the “Sllod”1 equations of motionf2g with
constant shear rate, where the phase variables such as shear
stress, hydrostatic pressure, and internal energy were found
to be periodic in time, with a period equal to the inverse
shear rate.

This time periodicity was investigated for a low-density
two-dimensional Weeks-Chandler-AndersensWCAd f3g
fluid. We found that the amplitude of oscillations increased
with the increase in shear rate, and disappeared quite rapidly
with the increase in the number of particles in the system, so
that for the investigated number densitysr=0.396 85d it be-
came virtually indistinguishable from the noise forNù8. We
showed that these oscillations can be reproduced using a
time-dependent generalization of the transient time-
correlation function formalismf4g, but we did not explore
the equilibrium linear response limit of this effect. We con-
jectured that the density has to be high enough so that it is
impossible for a particle to traverse a distanceL, equal to the
side length of the periodic cell, in any direction without in-
teracting with other particles. The investigated density was
the limit density still satisfying this condition.

In a recent workf5g, we established that this time three-
dimensional, WCA fluid system at a high density would
show finite unrelaxed shear stresses under strain, while re-
taining its liquid structure and diffusion, at much higher sys-
tem sizes sN<256d. This effect is caused by a finite-,
temperature-, and density-dependent “shear stress correlation
length,” related to the anisotropy in the pair distribution
function induced by the strained periodic boundary condi-
tions f6g si.e., adjacent horizontal rows of periodic cells
shifted by the same amount with respect to each otherd and
reflected in the angular dependence of the diffusion coeffi-

cient f7g. Here we show that this is another source of time
dependence of phase variables in the Sllod description of
shear flow at high density, but that in this case the amplitude
decreases with shear rate.

In this work we investigate the time periodicity of shear
stress under shearsassuming that the time dependence of the
other phase variables is of the same origind in the two limit-
ing cases of low and high density from the point of view of
the linear response theory. We show that the time periodicity
of shear stress can be described by a generalization of the
linear response theory that assumes strain dependence of
both the equilibrium ensemble averages and the shear stress
relaxation functions. The application of this theory to sys-
tems at low and high density shows that the periodic time
dependence is caused by different mechanisms in these two
cases. While the periodic behavior with the amplitude in-
creasing with shear rate at low densities is a completely non-
linear effect, the decreasing amplitude at high densities can
be described by linear response formalism, at least at low
shear, provided that viscosity of the system has a weak strain
dependence.

II. SIMULATION DETAILS

We have studied a three-dimensional fluid ofN identical
particles interacting through the short-range repulsive WCA
potential, Fi j =4«fss / r ijd12−ss / r ijd6g+« if the distancer ij

between the particlesi and j is less than 21/6s and zero
otherwise, where« is the depth of the Lennard-Jones poten-
tial well, and s is the particle exclusion diameter. The
Lennard-Jones unitsf8g are used throughout the paper.

We investigated the systems of varying size at two state
points. The first is at the temperature ofT=1.0 and the low-
density limit of r=0.176 78 that still satisfies the same con-
dition as the formerly studied two-dimensional systemf1g,
i.e., that it is impossible for a particle to traverse the periodic
cell in any direction without interacting with the other par-
ticle when N=2. This is the limiting density at which the
range of the WCA potential does not exceed half the simu-
lation box length forN=2.

The second state point is at the high densityr=1.0 at the
temperature ofT=1.2 where the system still stays in the fluid
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state even for sufficiently small system sizes for which the
strained periodic boundary conditions can cause finite shear
stressf7g. The smallest system size at this state point was
N=108; systems smaller than this would crystallize because
of the influence of periodic boundary conditionsf9g.

The systems were studied in equilibrium and under shear.
In equilibrium, static strain was imposed in the periodic
boundary conditionsf1,5,7g by shifting each horizontal layer
of periodic cells by the distanceD s0,D,L, whereL is the
periodic box lengthd in the x direction with respect to the
layer just below it. The dimensionless strain thus introduced
is «=D /L.

Shear is simulated using the Sllodf2g homogeneous con-
stant shear rate algorithm in conjunction with the Lees-
Edwards sliding periodic boundary conditionsf10g. The
Sllod equations of motion with shear applied in thex direc-
tion are

ṙ i = pi/m+ exgryi,
s1d

ṗi = Fi − exgpyi − api ,

wherer i andpi are the atomic positions and momenta,Fi is
the total interaction force acting on the atomi, g is the con-
stant strain rate,ex is the unit vector in thex direction, anda
is the Gauss thermostat multiplier,

a = o
i=1

N

Fi ·pi − gpxipyiYo
i=1

N

pi
2, s2d

used to remove viscous heat and keep the kinetic tempera-
ture, T=sopi

2/md / fkBs3N−4dg constant. The number of de-
grees of freedom 3N in the expression for temperature is
reduced by 4 because of the conservation of total momentum
and the constraint on kinetic energy. Shear rate varied from
0.0 sequilibriumd to 1.0. Thermostat was used even in equi-
librium swheng=0d in order to ensure that the properties of
the equilibrium and sheared systems were compared at the
same state point.

The equations of motions1d were integrated using the
fifth order Gear predictor-corrector method with the time
step of 0.001. In the equilibrium simulations, the system was
first equilibrated for 106 time steps at the desired static strain
« in the periodic boundary conditions. After that, we col-
lected the average values of the shear stress,

Pxys«dV =Ko
i=1

N
pxipyi

m
+ o

i,j.i

Fxij · ryijL , s3d

and computed the strain-dependent “modified” viscosityf7g
using the Green-Kubo relations,

h * s«d =
V

kBT
E

0

`

dtkfPxys«,0d − Pxy0s«dgfPxys«,td − Pxy0s«dgl,

s4d

where V is the volume of the simulation cell,kB is the
Boltzmann constant, andPxy0s«d is the ensemble average of
the equilibrium shear stress at the strain«. The modified
viscosity h* coincides with the conventional Green-Kubo

viscosity when the equilibrium shear stressPxy0 vanishes.
Equilibrium production runs were 108 time steps at low den-
sity and 107 time steps at high density, and the time window
for the integration of the shear stress autocorrelation function
s4d was five time unitssi.e., 5000 time stepsd.

In the nonequilibrium runs, the system was brought to the
steady state after 100 periods 1/g. The steady-state averages
were then collected over 106 periods in the low-density runs,
and in the high-density systems over 50 000 periods forN
=108 and for 5000 periods for the largest system size
N=500.

III. LINEAR RESPONSE THEORY

First, we briefly review the line of reasoning leading to
finite shear stress proportional to strain rate in fluids under
shear. If all fluid particles are instantaneously displaced at
time t=0 in x direction by dr =ex«ry swhere ex is the unit
vector in thex directiond, so that the total dimensionless
deformation or strain is equal to«, this creates instantaneous
shear stressPxys0d=G`« proportional to strain in the fluid.
The constant of proportionalityG` is the “infinite frequency
shear modulus.” In time, this shear stress decays to zero ac-
cording to some relaxation functionfRstd,

Pxystd = G`«fRstd. s5d

The relaxation function is such thatfRs0d=1, fRstd→0 as
t→`, and that the integrale0

`fRstddt exists and is finite.
When the system is sheared at a constant strain rateg

=d« /dt, new deformations are constantly imposed while
shear stresses due to the previous deformations did not have
time to fully relax. Thus afterdt we have

Pxysdtd = G`gdtfRsdtd.

After 2dt the shear stress is

Pxys2dtd = G`gdtfRs2dtd + G`gdtfRsdtd,

where the first term on the right hand side is the shear stress
due to the deformation imposed att=0, which has now been
relaxing for 2dt, and the second term is the shear stress im-
posed att=dt, which has been relaxing fordt. After ndt,

Pxysndtd = G`gdto
i=0

n−1

fR„sn − iddt…, s6d

or with the substitutiont=ndt ands= idt,

Pxystd = gE
0

t

G`fRst − sdds. s7d

The steady-state value ofPxy under constant shear rateg is
then equal to the infinite-time limit of the Eq.s7d, and is
proportional to shear rate as long as the relaxation function
and shear modulus do not get modified due to structural
changes under shear. The coefficient of proportionality

h = Pxys`d/g =E
0

`

G`fRstddt s8d

is the “linear response” viscosity of the system. In the Max-
well model of viscoelasticity, the relaxation function is as-
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sumed to have exponential form,fRstd=exps−t /td, wheret is
the “Maxwell relaxation time,” and viscosity is equal toG`t.
In practice, the relaxation is rarely exponential. Green-Kubo
theory gives the linear response viscosity in terms of corre-
lations of the shear stress fluctuations in equilibrium,

h =
V

kBT
E

0

`

dtkPxys0dPxystdl. s9d

Comparing Eqs.s8d ands9d, we can identify the infinite fre-
quency shear modulus as

G` =
V

kBT
kPxy

2 s0dl, s10d

and the relaxation function as

fRstd =
kPxys0dPxystdl

kPxy
2 s0dl

. s11d

In a more general case bothG` and the relaxation func-
tion fR depend on strain. We denoteFRs« ,td;G`s«dfRs« ,td,
where FRs« ,td corresponds to the equilibrium correlation
function in the strained system,

FRs«,td =
V

kBT
kfPxys«,0d − Pxy0s«dgfPxys«,td − Pxy0s«dgl.

s12d

FRs« ,td is continuous in both« andt, vanishes in the infinite
time limit and has a finite infinite time integral equal to the
“modified viscosity”h* s«d at the strain« fEq. s4dg.

In addition, we assume that the shear stress relaxes to a
strain-dependent equilibrium valuePxy0s«d. The equilibrium
shear stress must be an odd periodic function of strain with
the period equal to unity.

After instantaneous deformation from the initial strain«0
to «0+D«, shear stress relaxes according to

Pxys«0 + D«,td − Pxy0s«0 + D«d = D«FRs«0 + D«,td.

Let us assume that initially, att=0, the boundary strain is
equal to«0, and that the system is sheared at a constant rate
g. At the end of each time incrementdt, the shear stress will
relax to the value determined by the relaxation function at
the instantaneous value of strain. All terms of shear stress on
the right-hand side relax towards the value ofPxy0 corre-
sponding to the instantaneous value of strain.

In analogy to Eq.s6d, aftern steps of durationdt of shear-
ing with the shear rateg, shear stress is

Pxys«0 + ngdt,ndtd − Pxy0s«0 + ngdtd

= go
i=0

n−1

dtFR„«0 + ngdt,sn − iddt…,

or in integral form obtained by substitution«=«0+ngdt, t
=ndt, s= idt,

Pxys«,td − Pxy0s«d = gE
0

t

FRs«,t − sdds.

In the infinite-time limit the “steady state” shear stress at the
strain« is

Pxys«,td − Pxy0s«d = gE
0

`

FRs«,tddt = gh * s«d. s13d

If the equilibrium shear stressPxy0 vanishes for all values
of strain and viscosity is strain independent, then there is no
periodic dependence of shear stress in the linear response
slow strain rated regime. Note that viscosity can be strain
independent even if the relaxation functionFR depends
on strain, as long as its infinite time integral is strain
independent.

If Pxy0s«d has a nonvanishing amplitude, but the modified
viscosity h* does not depend on strain, the periodic form
Pxy0s«d under shear will be shifted by −gh* without any
deformation or phase lag, and the amplitude ofPxys« ,td will
be strain independent.

If the modified viscosity depends on strain, the equilib-
rium periodic formPxys«d gets deformed under shear even in
the linear range of shear rates. However, the period-averaged

shear stressP̄xy stays proportional to strain rate in the range

where the response is linear for all strains,P̄xy=gh̄* sh̄* is
the period-averaged modified viscosityd.

In the previous paperf1g, we have used the time-
dependent generalization of the transient time-correlation
function formalismf4g to obtain the strain dependence of
shear stress in the two-particle system in the nonlinear
regime,

Pxysg,«d = g
V

kBT
E

0

`

dtkPxys«,0dEQPxysg,«,tdNEQl, s14d

wherePxys« ,0dEQ is the instantaneous equilibrium value of
shear stress at the strain«, connected to the value of shear
stress at the same strain after timet by a nonequilibrium
trajectory with strain rateg. Equation s13d represents the
linear limit of Eq. s14d with the substitutionPxys« ,0dEQ

→ fPxys« ,0d−Pxy0s«dgEQ. The reasoning behind Eqs.s12d
and s13d provides the physical interpretation for Eq.s14d as

Pxysg,«d − Pxy0s«d = gh * sg,«d,

whereh* is the nonlinear modified viscosity,

h * sg,«d =
V

kBT
E

0

`

dtkfPxys«,0d − Pxy0s«dgEQPxysg,«,tdNEQl,

which depends both on strain and on strain rate.

IV. LOW DENSITY RESULTS AND DISCUSSION

In a low-density system under shear, the amplitude of the
averaged shear stress oscillations as a function of instanta-
neous strain quickly decreases with system size. In Fig. 1 we
show the amplitude ofPxy for increasing numbers of par-
ticles at the shear rateg=1.0 at two densities,r=0.176 78
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and r=0.15. Although the effect becomes reduced with the
decrease in density, it still exists for small system sizes even
at densities lower than that where the particles cannot
traverse the periodic cell without interacting, proving that the
conjecture in Ref.f1g was wrong.

Since the time periodicity of the shear stress is the most
prominent forN=2, this is the system size we explore fur-
ther. The amplitude of the shear stress oscillations increases
with the increase in shear rate, as illustrated in Fig. 2. At the
same time, the absolute value of the shear stress increases.
From Fig. 3 it can be estimated that the magnitude of shear
stress is proportional to shear ratesi.e., the response is lineard
up to g=0.4, after which shear thinning takes place. In the
linear range of shear rates, Fig. 2 shows that the shear stress
oscillations cannot be discerned within the accuracy of the
signal.

The time correlation functions for this system, computed
at different equilibrium strains« imposed by the periodic
boundary conditions, are shown in Fig. 4sad. As can be seen
in the graph, the equilibrium shear stress vanishes for all
strains and the relaxation functionFR found from Eq.s12d is
a continuous function of strain« as well as of the time,

FRs«,td =
V

kBT
kPxys«,0dPxys«,tdl. s15d

The cause of the strain dependence of the correlation func-
tion Eq. s15d can be understood in the language of hard-

FIG. 1. Number dependence of the amplitude of shear stress
oscillations at two low densitiessr=0.18 is actuallyr=0.176 78d
for the shear rateg=1.0.

FIG. 2. Periodic form of shear stress under strain for increasing
shear ratesg in a two-particle system at the densityg=0.176 78
under shear. The period of oscillations is 1/g in time units, or 1 in
terms of the instantaneous strain«=gt.

FIG. 3. Dependence of the shear stress averaged over a period

of oscillation P̄xy on shear rate for the two-particle system atr
=0.176 78. From the dotted line, the response can be estimated to
be linear for shear rates up tog=0.4.

FIG. 4. Shear stress autocorrelation functionssad and their inte-
gralssbd in equilibrium two-particle system at different static strain
«. While the correlation functions depend on strain, viscosity does
not.

JANKA PETRAVIC PHYSICAL REVIEW E71, 011202s2005d

011202-4



sphere systems. In the equilibrium two-body periodic sys-
tems under different boundary-imposed strains, the collision
frequency and the angular distributions of collisions remain
the same, but the collision sequences are different, since
when a particle leaves the minimum image box of the other
particle after a collision, it re-enters it at a different position
for different values of«. This affects the time-correlation
functions, but not the infinite-frequency shear modulus,
which is a time-independent ensemble average. Viscosity
does not depend on strain eitherfFig. 4sbdg—as an infinite-
time integral, it is again a time-independent ensemble
average.

The linear response theory presented in Sec. III predicts
the change in amplitude proportional to shear rate, but only if
equilibrium viscosity depends on strain. Since this is not the
case, the time periodicity of shear stress is a purely nonlinear
effect.

Under strong shear, the angular probability distribution of
collisions in a two-particle system becomes strain dependent
f11,12g, which causes the oscillations of shear stress. If the
number of particles in the system increases, so does the num-
ber of possibilities of pair collisions, and the differences in
the collision sequences in equilibrium and the angular distri-
butions under shear disappear. If the density is lowered so
that particles can move over the whole periodic cell length
without interacting, the “noise” caused by missed collisions
decreases the difference in the collision sequences and angu-
lar distributions.

V. HIGH DENSITY RESULTS AND DISCUSSION

At the high density ofr=1.0 the smallest studied system
size wasN=108. This system size is large enough that the
sequence of interactions does not influence the shear stress
relaxation under strain. However, for sufficiently small sys-
tem sizessup to N,500d shear stress does not generally
relax to zero, but to a strain-dependent finite value. The
phase space distribution functions are strain dependent be-
cause the configurations that can reconcile different distribu-
tions of atoms on the opposite boundaries contain some shear
stress dependent on the imposed boundary strainf5g. At the
same time, the boundary strain does not affect the particle
mobility—diffusion coefficient is the same under all strains
within the simulation accuracyf7g, but becomes slightly an-
isotropic. The eventual dependence of the modified viscosity
on strain could not be discerned within the simulation
accuracy.

The correlation functions forN=108 are presented in Fig.
5 for several values of strain. There are small differences in
the infinite frequency shear moduli that are not in the same
order as the unrelaxed stresses in the tails of correlation func-
tions, but it is not clear if this is due to statistical errors.
Viscosity calculated from the integral Eq.s4d at zero strain is
h=6.35.

The magnitude of maximum ensemble-averaged shear
stress under strain decreases with system size, albeit in an
irregular, nonmonotonic wayscrosses in Fig. 6d. If the sys-
tem is sheared very slowly, shear stress averaged at the same
instantaneous strains oscillates periodically in time with the

period equal to the inverse shear rate, and the amplitude
equal to the maximum ensemble-averaged shear stress under
strain in equilibrium. Open circles in Fig. 6 represent the
N-dependent amplitude of shear stress oscillations under the
shear rateg=0.01; they coincideswithin the error barsd with
the maximum equilibrium shear stress in the strained bound-
ary conditions.

In further studies we use the system size ofN=108. In
Fig. 7 we comparesas full circlesd the average shear stress
under several strains in equilibrium andsthe dashed-dotted
lined the time-periodic form of the shear stress under shear
rate of 0.01 as a function of instantaneous strain. If we sub-
tract the shear stress averaged over the period of oscillation
swhich is equal to −gh, whereh=6.35 as calculated from
zero strain equilibrium Green-Kubo integrald, from the peri-
odic form, the equilibrium shear stresses fall on the obtained
sdottedd line.

The magnitude of period-averaged shear stress increases
with shear rate, initially linearly for shear rates up to 0.3,
after which the system starts to shear thinfFig. 8sadg. The
amplitude of shear stress oscillations decreases with the in-

FIG. 5. Shear stress time-correlation function for different
strains« in a system of 108 particles atT=1.2,r=1.0. The inset on
the left-hand side shows an enlargement of the shear modulus, the
right-hand-side inset shows an enlargement of the tail.

FIG. 6. Amplitude of the average shear stress as a function of
system size in equilibrium under strained periodic boundary condi-
tions sg=0.0, crossesd and under low shear ratesg=0.01, open
circlesd at T=1.2, r=1.0. The amplitudes are within each other’s
error bars.
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crease in shear rate up tog=0.4. For higher shear rates it
starts to increase in an irregular, nonmonotonic way.

In Fig. 8sbd, the amplitude of shear stress oscillations de-
creases linearly forg,0.3, i.e., in the range where the
period-averaged shear stress is proportional to shear rate. A
linear changeswhether increase or decreased of amplitude
under shear is predicted by the linear response theory in Sec.
III if the modified viscosity is strain dependent. We plot
shear stress at four strains as a function of shear rate in this
range in Fig. 9. For low shear rates the dependence is clearly
linear with weakly strain-dependent slopes, showing that the
modified viscosity is indeed dependent on strain. This strain
dependence is responsible for the small decrease in ampli-
tude in this range of strain rates.

Note that a linear decrease in amplitude according to Eq.
s13d cannot go on indefinitely with increase in shear rate—
eventually, some peaks in the form in Fig. 7 will disappear
and then move to the other side of the period average. Until
all the peaks change sides, the amplitude will change irregu-
larly; afterwards it will increase linearly with the increase in
shear rate, just as can be seen in Fig. 8sbd for gù0.7. How-
ever, for such high shear rates the increase is not linear be-
cause of shear thinning.

VI. CONCLUSION

We have studied the periodic time dependence of shear
stress in the constant strain rate algorithm for computer
simulation of bulk shear flow in the low and high fluid den-
sity limits.

We showed that the generalization of the linear response
theory, where both the equilibrium shear stress relaxation
function and the equilibrium shear stress are strain depen-
dent, predicts that the periodic form of shear stress as a func-
tion of strain for different shear rates will be equal to the
periodic strain-dependent form of shear stress shifted by the
period-averaged viscosity multiplied by shear rate. The de-
formation of the signal will be determined by the strain de-
pendence of equilibrium viscosity and proportional to strain
rate.

FIG. 7. Full circles represent equilibrium shear stress as a func-
tion of strain for theN=108 system atT=1.2, r=1.0. The dashed-
dotted line is the strain-dependent periodic form of shear stress
under shear rateg=0.01. When this periodic form is shifted by

P̄xy=gh, whereh=6.35 is the equilibrium zero-strain viscosity, it
passes through the equilibrium shear stress values.

FIG. 8. sad Dependence of the shear stress averaged over a pe-

riod of oscillationP̄xy on shear rate forN=108. The response can be
estimated to be linear for shear rates up tog=0.3. sbd Amplitude of
oscillations of shear stress decreases linearly with the increase in
shear rate in the linear response regimesfull lined. For higher shear
rates it reaches a minimum and then increases nonmonotonically.
The dashed line is a guide for the eye.

FIG. 9. For shear ratesgø0.1, the magnitude of shear stress
increases proportionally to shear rate, but with different slopes re-
flecting strain-dependent viscosities.
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In the case of very low density, the shear stress relaxation
function depends on strain only for extremely low particle
numberssN,2d, where it is a consequence of the strain
dependence of the sequence of collisions. Equilibrium shear
stress vanishes and viscosity does not depend on strain. The
dependence of the probability distribution of collisions on
strain is a nonlinear effect, and generates the periodic time
dependence of shear stress only in the nonlinear regime, for
g.0.4.

In contrast, when the density is high, both the equilibrium
shear stress and the modified viscositysGreen-Kubo viscos-
ity calculated using the difference between the ensemble-
averaged shear stress and its instantaneous valued depend on

strain for sufficiently small systemssN,500d. The weak de-
pendence of viscosity on strain causes the linear decrease of
amplitude in the linear regime to a minimum value. For
higher shear rates there is a nonlinear increase in amplitude
accompanied by shear thinning in the period-averaged shear
stress.
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